
© 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIR1808169 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 88

Dissecting the Bouncer and Malware Detection in

Google Play

1 A.Kiranmayi, 2N.Padmaja.
1PG Student, Dept. of CSE, School of Engineering & Technology, Sri Padmavati Mahila University (Women's University),

Tirupati .
2Assistant Prof, M.Tech, Dept. of CSE, Sri Padmavati Mahila University (Women's University), Tirupati .

Abstract—Fraudulent behaviors in Google Play, the most popular Android app market, fuel search rank abuse and

malware proliferation. To identify malware, previous work has focused on app executable and permission analysis. In

this paper, we introduce FairPlay, a novel system that discovers and leverages traces left behind by fraudsters, to

detect both malware and apps subjected to search rank fraud. FairPlay correlates review activities and uniquely

combines detected review relations with linguistic and behavioral signals gleaned from Google Play app data (87K

apps, 2.9M reviews, and 2.4M reviewers, collected over half a year), in order to identify suspicious apps. FairPlay

achieves over 95% accuracy in classifying gold standard datasets of malware, fraudulent and legitimate apps. We

show that 75% of the identified malware apps engage in search rank fraud. FairPlay discovers hundreds of fraudulent

apps that currently evade Google Bouncer’s detection technology. FairPlay also helped the discovery of more than

1,000 reviews, reported for 193 apps, that reveal a new type of “coercive” review campaign: users are harassed into

writing positive reviews, and install and review other apps.

Index Terms—Android market, search rank fraud, malware detection

I INTRODUCTION

 The commercial success of Android app markets

such as Google Play [1] and the incentive model they

offer to popular apps, make them appealing targets

for fraudulent and malicious behaviors. Some

fraudulent developers deceptively boost the search

rank and popularity of their apps (e.g., through fake

reviews and bogus installation counts) [2], while

malicious developers use app markets as a launch pad

for their malware [3]–[6]. The motivation for such

behaviors is impact: app popularity surges translate

into financial benefits and expedited malware

proliferation.

 Fraudulent developers frequently exploit

crowdsourcing sites (e.g., Freelancer [7], Fiverr [8],

BestAppPromotion [9]) to hire teams of willing

workers to commit fraud collectively, emulating

realistic, spontaneous activities from unrelated

people (i.e., “crowdturfing” [10]), see Figure 1 for an

example. We call this behavior “search rank fraud”.

 In addition, the efforts of Android markets to

identify and remove malware are not always

successful. For instance, Google Play uses the Bouncer

system [11] to remove malware. However, out of the

7, 756 Google Play apps we analyzed using VirusTotal

[12], 12% (948) were flagged by at least one anti-virus

tool and 2% (150) were identified as malware by at

least 10 tools (see Figure 6). Previous mobile malware

detection work has focused on dynamic analysis of

app executables [13]–[15] as well as static analysis of

code and permissions [16]–[18]. However, recent

Android malware analysis revealed that malware

evolves quickly to bypass anti-virus tools [19]. In this

paper, we seek to identify both malware and search

rank fraud subjects in Google Play. This

combinationFig. 1: An “install job” posting from

Freelancer [7], asking for 2000 installs within 3 days

(in orange), in an organized way that includes

expertise verifications and provides secrecy

assurances (in blue). Text enlarged for easier reading.

is not arbitrary: we posit that malicious developers

http://www.jetir.org/

© 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIR1808169 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 89

resort to search rank fraud to boost the impact of

their malware. Unlike existing solutions, we build this

work on the observation that fraudulent and

malicious behaviors leave behind telltale signs on app

markets. We uncover these nefarious acts by picking

out such trails. For instance, the high cost of setting

up valid Google Play accounts forces fraudsters to

reuse their accounts across review writing jobs,

making them likely to review more apps in common

than regular users. Resource constraints can compel

fraudsters to post reviews within short time intervals.

Legitimate users affected by malware may report

unpleasant experiences in their reviews. Increases in

the number of requested permissions from one

version to the next, which we will call “permission

ramps”, may indicate benign to malware (Jekyll-Hyde)

transitions.

 We propose FairPlay, a system that leverages the

above observations to efficiently detect Google Play

fraud and malware (see Figure 7). Our major

contributions are: A fraud and malware detection

approach. To detect fraud and malware, we propose

and generate 28 relational, behavioral and linguistic

features, that we use to train supervised learning

algorithms [§ 4]:

 Real-world Impact: Uncover Fraud & Attacks.

FairPlay discovers hundreds of fraudulent apps. We

show that these apps are indeed suspicious: the

reviewers of 93.3% of them form at least 1 pseudo-

clique, 55% of these apps have at least 33% of their

reviewers involved in a pseudo-clique, and the

reviews of around 75% of these apps contain at least

20 words indicative of fraud.

 FairPlay also enabled us to discover a novel,

coercive review campaign attack type, where app

users are harassed into writing a positive review for

the app, and install and review other apps. We have

discovered 1, 024 coerced reviews, from users

complaining about 193 such apps [§ 5.4 & § 5.5].

Fig. 1: Google Play components and relations. Google

Play’s functionality centers on apps, shown as red

disks. Developers, shown as orange disks upload apps.

A developer may upload multiple apps. Users, shown

as blue squares, can install and review apps. A user

can only review an app that he previously installed.

 Burguera et al. [13] used crowdsourcing to collect

system call traces from real users, then used a

“partitional” clustering algorithm to classify benign

and malicious apps. Shabtai et al. [14] extracted

features from monitored apps (e.g., CPU

consumption, packets sent, running processes) and

used machine learning to identify malicious apps.

Grace et al. [15] used static analysis to efficiently

identify high and medium risk apps. Previous work has

also used app permissions to pinpoint malware [16]–

[18]. Sarma et al. [16] use risk signals extracted from

app permissions, e.g., rare critical permissions (RCP)

and rare pairs of critical permissions (RPCP), to train

SVM and inform users of the risks vs. benefits

tradeoffs of apps. In § 5.3 we show that FairPlay

significantly improves on the performance achieved

by Sarma et al. [16]. Peng et al. [17] propose a score

to measure the risk of apps, based on probabilistic

generative models such as Naive Bayes. Yerima et al.

[18] also use features extracted from app

permissions, API calls and commands extracted from

the app executables. Sahs and Khan [22] used

features extracted from app permissions and control

flow graphs to train an SVM classi- fier on 2000

benign and less than 100 malicious apps. Sanz et al.

[23] rely strictly on permissions as sources of features

for several machine learning tools.

They use a dataset of around 300 legitimate

and 300 malware apps. Google has deployed Bouncer,

a framework that monitors published apps to detect

and remove malware. Oberheide and Miller [11] have

analyzed and revealed details of Bouncer (e.g., based

in QEMU, using both static and dynamic analysis).

Bouncer is not sufficient - our results show that 948

apps out of 7,756 apps that we downloaded from

Google Play are detected as suspicious by at least 1

anti-virus tool. In addition, FairPlay detected

suspicious behavior for apps that were not removed

by Bouncer during a more than 6 months long

interval. Instead of analyzing app executables,

http://www.jetir.org/

© 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIR1808169 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 90

FairPlay employs a relational, linguistic and behavioral

approach based on longitudinal app data. FairPlay’s

use of app permissions differs from existing work

through its focus on the temporal dimension, e.g.,

changes in the number of requested permissions, in

particular the “dangerous” ones. We observe that

FairPlay identifies and exploits a new relationship

between malware and search rank fraud.

II Graph Based Opinion Spam Detection

 Graph based approaches have been proposed to

tackle opinion spam [24], [25]. Ye and Akoglu [24]

quantify the chance of a product to be a spam

campaign target, then cluster spammers on a 2-hop

subgraph induced by the products with the highest

chance values. Akoglu et al. [25] frame fraud

detection as a signed network classification problem

and classify users and products, that form a bipartite

network, using a propagation-based algorithm.

 FairPlay’s relational approach differs as it identifies

apps reviewed in a contiguous time interval, by

groups of users with a history of reviewing apps in

common. FairPlay combines the results of this

approach with behavioral and linguistic clues,

extracted from longitudinal app data, to detect both

search rank fraud and malware apps. We emphasize

that search rank fraud goes beyond opinion spam, as

it implies fabricating not only reviews, but also user

app install events and ratings.

We have collected longitudinal data from

87K+ newly released apps over more than 6 months,

and identified gold standard data. In the following, we

briefly describe the tools we developed, then detail

the data collection effort and the resulting datasets.

A. Data collection tools. We have developed the

Google Play Crawler (GPCrawler) tool, to

automatically collect data published by Google Play

for apps, users and reviews. Google Play prevents

scripts from scrolling down a user page. Thus, to

collect the ids of more than 20 apps reviewed by a

user. To overcome this limitation, we developed a

Python script and a Firefox add-on. Given a user id,

the script opens the user page in Firefox. When the

script loads the page, the addon becomes active. The

add-on interacts with Google Play pages using content

scripts (Browser specific components that let us

access the browsers native API) and port objects for

message communication. The add-on displays a

“scroll down” button that enables the script to scroll

down to the bottom of the page. The script then uses

a DOMParser to extract the content displayed in

various formats by Google Play. It then sends this

content over IPC to the add-on. The add-on stores it,

using Mozilla XPCOM components, in a sand-boxed

environment of local storage in a temporary file. The

script then extracts the list of apps rated or reviewed

by the user.

 We have also developed the Google Play App

Downloader (GPad), a Java tool to automatically

download apks of free apps on a PC, using the open-

source Android Market API [26]. GPad takes as input a

list of free app ids, a Gmail account and password,

and a GSF id. GPad creates a new market session for

the “androidsecure” service and logs in. GPad sets

parameters for the session context (e.g., mobile

device Android SDK version, mobile operator,

country), then issues a GetAssetRequest for each app

identifier in the input list. GPad introduces a 10s delay

between requests. The result contains the url for the

app; GPad uses this url to retrieve and store the app’s

binary stream into a local file. After collecting the

binaries of the apps on the list, GPad scans each app

apk using VirusTotal [12], an online malware detector

provider, to find out the number of anti-malware

tools (out of 57: AVG, McAfee, Symantec, Kaspersky,

Malwarebytes, F-Secure, etc.) that identify the apk as

suspicious. We used 4 servers (PowerEdge R620, Intel

Xeon E-26XX v2 CPUs) to collect our datasets, which

we describe next.

III Longitudinal App Data

 In order to detect suspicious changes that occur early

in the lifetime of apps, we used the “New Releases”

link to identify apps with a short history on Google

Play. Our interest in newly released apps stems from

our analysis of search rank fraud jobs posted on

crowdsourcing sites, that revealed that app

developers often recruit fraudsters early after

uploading their apps on Google Play. Their intent is

likely to create the illusion of an up-and-coming app,

that may then snowball with interest from real users.

http://www.jetir.org/

© 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIR1808169 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 91

By monitoring new apps, we aim to capture in real-

time the moments when such search rank fraud

campaigns begin.

 We approximate the first upload date of an app

using the day of its first review. We have started

collecting new releases in July 2014 and by October

2014 we had a set of 87, 223 apps, whose first upload

time was under 40 days prior to our first collection

time, when they had at most 100 reviews.

 Figure 3 shows the distribution of the fresh app

categories. Figure 4 shows the average rating

distribution of the fresh apps. Most apps have at least

a 3.5 rating aggregate rating, with few apps between

1 and 2.5 stars. However, we observe a spike at more

than 8, 000 apps with less than 1 star. We have

collected longitudinal data from these 87, 223 apps

between October 24, 2014 and May 5, 2015.

Specifically, for each app we captured “snapshots” of

its Google Play metadata, twice a week. An app

snapshot consists of values for all its time varying

variables, e.g., the reviews, the rating and install

counts, and the set of requested permissions (see § 2

for the complete list). For each of the 2, 850, 705

reviews we have collected from the 87, 223 apps, we

recorded the reviewer’s name and id (2, 380, 708

unique ids), date of review, review title, text, and

rating.

 This app monitoring process enables us to extract a

suite of unique features, that include review, install

and permission changes. In particular, we note that

this ap

Fig. 5: Co-review graph of 15 seed fraud accounts (red

nodes) and the 188 GbA accounts (orange nodes).

 Edges indicate reviews written in common by the

accounts corresponding to the endpoints. We only

show edges having at least one seed fraud account as

an endpoint. The 15 seed fraud accounts form a

suspicious clique with edges weights that range

between 60 and 217. The GbA accounts are also

suspiciously well connected to the seed fraud

accounts: the weights of their edges to the seed fraud

accounts ranges between 30 and 302.

 proach enables us to overcome the Google Play

limit of 4000 displayed reviews per app: each

snapshot will capture only the reviews posted after

the previous snapshot.

Benign apps. We have selected 925 candidate apps

from the longitudinal app set, that have been

developed by Google designated “top developers”.

We have used GPad to filter out those flagged by

http://www.jetir.org/

© 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIR1808169 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 92

VirusTotal. We have manually investigated 601 of the

remaining apps, and selected a setof 200 apps that (i)

have more than 10 reviews and (ii) were developed by

reputable media outlets (e.g., NBC, PBS) or have an

associated business model (e.g., fitness trackers). We

have also collected the 32, 022 reviews of these apps.

Fig. 7: FairPlay system architecture. The CoReG

module identifies suspicious, time related co-review

behaviors. The RF module uses linguistic tools to

detect suspicious behaviors reported by genuine

reviews. The IRR module uses behavioral information

to detect suspicious apps. The JH module identifies

permission ramps to pinpoint possible Jekyll-Hyde app

transitions.

Genuine reviews. We have manually collected a gold

standard set of 315 genuine reviews, as follows. First,

we have collected the reviews written for apps

installed on the Android smartphones of the authors.

We then used Google’s text and reverse image search

tools to identify and filter those that plagiarized other

reviews or were written from accounts with generic

photos. We have then manually selected reviews that

mirror the authors’ experience, have at least 150

characters, and are informative (e.g., provide

information about bugs, crash scenario, version

update impact, recent changes).

FairPlay organizes the analysis of longitudinal app

data into the following 4 modules, illustrated in Figure

7. The CoReview Graph (CoReG) module identifies

apps reviewed in a contiguous time window by groups

of users with significantly overlapping review

histories. The Review Feedback (RF) module exploits

feedback left by genuine reviewers, while the Inter

Review Relation (IRR) module leverages relations

between reviews, ratings and install counts. The

Jekyll-Hyde (JH) module monitors app permissions,

with a focus on dangerous ones, to identify apps that

convert from benign to malware. Each module

produces several features that are used to train an

app classifier. FairPlay also uses general features such

as the app’s average rating, total number of reviews,

ratings and installs, for a total of 28 features. Table 1

summarizes the most important features. We now

detail each module and the features it extracts.

Fig. 8: Example pseudo-cliques and PCF output. Nodes

are users and edge weights denote the number of

apps reviewed in common by the end users. Review

timestamps have a 1-day granularity. (a) The entire

co-review graph, detected as pseudo-clique by PCF

when θ is 6. When θ is 7, PCF detects the subgraphs

of (b) the first two days and (c) the last two days.

When θ=8, PCF detects only the clique formed by the

first day reviews (the red nodes).

IV The Co-Review Graph (CoReG)

Module

This module exploits the observation that fraudsters

who control many accounts will re-use them across

multiple jobs. Its goal is then to detect sub-sets of an

app’s reviewers that have performed significant

common review activities in the past. In the following,

we describe the co-review graph concept, formally

present the weighted maximal clique enumeration

problem, then introduce an efficient heuristic that

leverages natural limitations in the behaviors of

fraudsters. Co-review graphs. Let the co-review graph

of an app, see Figure 8, be a graph where nodes

correspond to user accounts who reviewed the app,

and undirected edges have a weight that indicates the

number of apps reviewed in common by the edge’s

endpoint users. Figure 16a shows the co-review clique

of one of the seed fraud apps (see § 3.2). The co-

review graph concept naturally identifies user

accounts with significant past review activities.

http://www.jetir.org/

© 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIR1808169 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 93

Fig. 9: Timelines of positive reviews for 2 apps from

the fraudulent app dataset. The first app has multiple

spikes while the second one has only one significant

spike. sentences extracted from randomly selected

350 positive and 410 negative Google Play reviews,

and (ii) 10, 663 sentences extracted from 700 positive

and 700 negative IMDB movie reviews [31]. 10-fold

cross validation of the Naive Bayes classifier over

these datasets reveals a false negative rate of 16.1%

and a false positive rate of 19.65%, for an overall

accuracy of 81.74%. We ran a binomial test [32] for a

given accuracy of p=0.817 over N=1,041 cases using

the binomial distribution binomial(p, N) to assess the

95% confidence interval for our result. The deviation

of the binomial distribution is 0.011. Thus, we are

95% confident that the true performance of the

classifier is in the interval (79.55, 83.85).

We used the trained Naive Bayes classifier to

determine the statements of R that encode positive

and negative sentiments. We then extracted the

following features: (i) the percentage of statements in

R that encode positive and negative sentiments

respectively, and (ii) the rating of R and its percentile

among the reviews written by U.

In Section V we evaluate the review

classification accuracy of several supervised learning

algorithms trained on these features and on the gold

standard datasets of fraudulent and genuine reviews

introduced in Section III.

Step RF.2: Reviewer feedback extraction. We

conjecture that (i) since no app is perfect, a

“balanced” review that contains both app positive

and negative sentiments is more likely to be genuine,

and (ii) there should exist a relation between the

review’s dominating sentiment and its rating. Thus,

after filtering out fraudulent reviews, we extract

feedback from the remaining reviews. For this, we

have used NLTK to extract 5, 106 verbs, 7, 260 nouns

and 13, 128 adjectives from the 97, 071 reviews we

collected from the 613 gold standard apps (see § 3.2).

We removed non ascii characters and stop words,

then applied lemmatization and discarded words that

appear at most once.

 We have attempted to use stemming, extracting the

roots of words, however, it performed poorly. This is

due to the fact that reviews often contain (i)

shorthands, e.g., “ads”, “seeya”, “gotcha”, “inapp”, (ii)

misspelled words, e.g., “pathytic”, “folish”, “gredy”,

“dispear” and even (iii) emphasized misspellings, e.g.,

“hackkked”, “spammmerrr”, “spooooky”.

Fig. 10: Mosaic plot of install vs. rating count relations

of the 87K apps. Larger cells (rectangles) signify that

more apps have the corresponding rating and install

count range; dotted lines mean no apps in a certain

install/rating category. The standardized residuals

identify the cells that contribute the most to the χ 2

test. The most significant rating:install ratio is 1:100.

 We used the resulting words to manually identify

lists of words indicative of malware, fraudulent and

benign behaviors. Our malware indicator word list

contains 31 words (e.g., risk, hack, corrupt, spam,

malware, fake, fraud, blacklist, ads). The fraud

indicator word list contains 112 words (e.g., cheat,

hideous, complain, wasted, crash) and the benign

indicator word list contains 105 words. RF features.

We extract 3 features (see Table 1), denoting the

percentage of genuine reviews that contain malware,

fraud, and benign indicator words respectively. We

also extract the impact of detected fraudulent

reviews on the overall rating of the app: the absolute

http://www.jetir.org/

© 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIR1808169 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 94

difference between the app’s average rating and its

average rating when ignoring all the fraudulent

reviews.

This module leverages temporal relations

between reviews, as well as relations between the

review, rating and install counts of apps, to identify

suspicious behaviors. Temporal relations. In order to

compensate for a negative review, an attacker needs

to post a significant number of positive reviews.

Specifically,

 Claim 1. Let RA denote the average rating of an app A

just before receiving a 1 star review. In order to

compensate for the 1 star review, an attacker needs

to post at least RA−1 5−RA positive reviews.

Proof: Let σ be the sum of all the k reviews received

by a before time T . Then, RA = σ k . Let qr be the

number of fraudulent reviews received by A. To

compensate for the 1 star review posted at time T , qr

is minimized when all those reviews are 5 star. We

then have that: RA = σ k = σ+1+5qr k+1+qr . The

numerator of the last fraction denotes the sum of all

the ratings received by A after time T and the

denominator is the total number of reviews.

Rewriting the last equality, weobtain that qr = σ−k

5k−σ = RA−1 5−RA . The last equality follows by

dividing both the numerator and denominator by k.

Fig. 11: Mosaic plot showing relationships between

the install count and the average app rating, over the

87K apps. A cell contains the apps that have a certain

install count interval (x axis) and rating interval (y

axis). Larger cells contain more apps. We observe a

relationship between install count and rating: apps

that receive more installs also tend to have higher

average ratings (i.e., above 3 stars). This may be due

to app popularity relationship to quality which may be

further positively correlated with app rating.

The 1, 024 coerced reviews were posted for

193 apps. Figure 20 shows the distribution of the

number of coerced reviews per app. While most of the

193 apps have received less than 20 coerced reviews, 5

apps have each received more than 40 such reviews.

We have observed several duplicates among the

coerced reviews. We identify two possible

explanations. First, as we previously mentioned, some

apps do not keep track of the user having reviewed

them, thus repeatedly coerce subsequent reviews from

the same user. A second explanation is that seemingly

coerced reviews, can also be posted as part of a

negative search rank fraud campaign. However, both

scenarios describe apps likely to have been subjected

to fraudulent behaviors.

V CONCLUSIONS

We have introduced FairPlay, a system to

detect both fraudulent and malware Google Play apps.

Our experiments on a newly contributed longitudinal

app dataset, have shown that a high percentage of

malware is involved in search rank fraud; both are

accurately identified by FairPlay. In addition, we

showed FairPlay’s ability to discover hundreds of apps

that evade Google Play’s detection technology,

including a new type of coercive fraud attack.

REFERENCES

[1] Google Play. https://play.google.com/.

[2] Ezra Siegel. Fake Reviews in Google Play and Apple

App Store. Appentive, 2014.

[3] Zach Miners. Report: Malware-infected Android apps

spike in the Google Play store. PCWorld, 2014.

[4] Stephanie Mlot. Top Android App a Scam, Pulled From

Google Play. PCMag, 2014.

[5] Daniel Roberts. How to spot fake apps on the Google

Play store Fortune, 2015.

[6] Andy Greenberg. Malware Apps Spoof Android Market

To Infect Phones. Forbes Security, 2014.

[7] Freelancer. http://www.freelancer.com.

[8] Fiverr. https://www.fiverr.com/.

[9] BestAppPromotion. www.bestreviewapp.com/.

[10] Gang Wang, Christo Wilson, Xiaohan Zhao, Yibo Zhu,

Manish Mohanlal, Haitao Zheng, and Ben Y. Zhao. Serf and

Turf: Crowdturfing for Fun and Profit. In Proceedings of

ACM WWW. ACM, 2012.

[11] Jon Oberheide and Charlie Miller. Dissecting the

Android Bouncer. SummerCon2012, New York, 2012.

[12] VirusTotal - Free Online Virus, Malware and URL

Scanner. https://www.virustotal.com/, Last accessed on May

2015.

http://www.jetir.org/

© 2018 JETIR August 2018, Volume 5, Issue 8 www.jetir.org (ISSN-2349-5162)

JETIR1808169 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 95

[13] Iker Burguera, Urko Zurutuza, and Simin Nadjm-

Tehrani. Crowdroid: Behavior-Based Malware Detection

System for Android. In Proceedings of ACM SPSM, pages

15–26. ACM, 2011.

[14] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan

Glezer, and Yael Weiss. Andromaly: a Behavioral Malware

Detection Framework for Android Devices. Intelligent

Information Systems, 38(1):161–190, 2012.

[15] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong

Zou, and Xuxian Jiang. Riskranker: Scalable and Accurate

Zero-day Android Malware Detection. In Proceedings of

ACM MobiSys, 2012.

[16] Bhaskar Pratim Sarma, Ninghui Li, Chris Gates, Rahul

Potharaju, Cristina Nita-Rotaru, and Ian Molloy. Android

Permissions: a Perspective Combining Risks and Benefits.

In Proceedings of ACM

SACMAT, 2012.

[17] Hao Peng, Chris Gates, Bhaskar Sarma, Ninghui Li,

Yuan Qi, Rahul Potharaju, Cristina Nita-Rotaru, and Ian

Molloy. Using Probabilistic Generative Models for Ranking

Risks of Android Apps. In Proceedings of ACM CCS, 2012.

[18] S.Y. Yerima, S. Sezer, and I. Muttik. Android Malware

Detection Using Parallel Machine Learning Classifiers. In

Proceedings of NGMAST, Sept 2014.

[19] Yajin Zhou and Xuxian Jiang. Dissecting Android

Malware: Characterization and Evolution. In Proceedings of

the IEEE S&P, pages 95–109. IEEE, 2012.

[20] Fraud Detection in Social Networks.

https://users.cs.fiu.edu/

_carbunar/caspr.lab/socialfraud.html.

[21] Google I/O 2013 - Getting Discovered on Google Play.

www. youtube.com/watch?v=5Od2SuL2igA, 2013.

[22] Justin Sahs and Latifur Khan. A Machine Learning

Approach to Android Malware Detection. In Proceedings of

EISIC, 2012.

[23] Borja Sanz, Igor Santos, Carlos Laorden, Xabier

Ugarte-Pedrero, Pablo Garcia Bringas, and Gonzalo

´Alvarez. Puma: Permission usage to detectmalware in

android. In International Joint Conference

CISIS12-ICEUTE´ 12-SOCO´ 12 Special Sessions, pages

289–298. Springer, 2013.

[24] Junting Ye and Leman Akoglu. Discovering opinion

spammer groups by network footprints. In Machine

Learning and Knowledge Discovery in Databases, pages

267–282. Springer, 2015.

[25] Leman Akoglu, Rishi Chandy, and Christos Faloutsos.

Opinion Fraud Detection in Online Reviews by Network

Effects. In Proceedings of ICWSM, 2013.

[26] Android Market API. https://code.google.com/p/

android-market-api/, 2011.

[27] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi.

The worstcase time complexity for generating all maximal

cliques and computational experiments. Theor. Comput.

Sci., 363(1):28–42, October 2006.

[28] Kazuhisa Makino and Takeaki Uno. New algorithms

for enumerating all maximal cliques. 3111:260–272, 2004.

[29] Takeaki Uno. An efficient algorithm for enumerating

pseudo cliques. In Proceedings of ISAAC, 2007.

[30] Steven Bird, Ewan Klein, and Edward Loper. Natural

Language Processing with Python. O’Reilly, 2009.

[31] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.

Thumbs Up? Sentiment Classification UsingMachine

Learning Techniques. In Proceedings of EMNLP, 2002.

[32] John H. McDonald. Handbook of Biological Statistics.

Sparky House Publishing, second edition, 2009.

A.Kiranmayi was born in AP, India. Currently she is

studying her Post graduate degree in School of Engineering

& Technology, Sri Padamavathi Mahila visvavidyalayam,

Tirupathi in Department of Computer Science &

Engineering.

N.Padmaja is currently working as an Assistant Professor

in CSE department, School of Engineering & Technology,

Sri Padamavathi Mahila visvavidyalayam,Tirupati.

http://www.jetir.org/
https://users.cs.fiu.edu/
https://code.google.com/p/

