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Abstract—Fraudulent behaviors in Google Play, the most popular Android app market, fuel search rank abuse and 

malware proliferation. To identify malware, previous work has focused on app executable and permission analysis. In 

this paper, we introduce FairPlay, a novel system that discovers and leverages traces left behind by fraudsters, to 

detect both malware and apps subjected to search rank fraud. FairPlay correlates review activities and uniquely 

combines detected review relations with linguistic and behavioral signals gleaned from Google Play app data (87K 

apps, 2.9M reviews, and 2.4M reviewers, collected over half a year), in order to identify suspicious apps. FairPlay 

achieves over 95% accuracy in classifying gold standard datasets of malware, fraudulent and legitimate apps. We 

show that 75% of the identified malware apps engage in search rank fraud. FairPlay discovers hundreds of fraudulent 

apps that currently evade Google Bouncer’s detection technology. FairPlay also helped the discovery of more than 

1,000 reviews, reported for 193 apps, that reveal a new type of “coercive” review campaign: users are harassed into 

writing positive reviews, and install and review other apps.  

 

Index Terms—Android market, search rank fraud, malware detection 

 

I  INTRODUCTION 

       The commercial success of Android app markets 

such as Google Play [1] and the incentive model they 

offer to popular apps, make them appealing targets 

for fraudulent and malicious behaviors. Some 

fraudulent developers deceptively boost the search 

rank and popularity of their apps (e.g., through fake 

reviews and bogus installation counts) [2], while 

malicious developers use app markets as a launch pad 

for their malware [3]–[6]. The motivation for such 

behaviors is impact: app popularity surges translate 

into financial benefits and expedited malware 

proliferation. 

       Fraudulent developers frequently exploit 

crowdsourcing sites (e.g., Freelancer [7], Fiverr [8], 

BestAppPromotion [9]) to hire teams of willing 

workers to commit fraud collectively, emulating 

realistic, spontaneous activities from unrelated 

people (i.e., “crowdturfing” [10]), see Figure 1 for an 

example. We call this behavior “search rank fraud”. 

      In addition, the efforts of Android markets to 

identify and remove malware are not always 

successful. For instance, Google Play uses the Bouncer 

system [11] to remove malware. However, out of the 

7, 756 Google Play apps we analyzed using VirusTotal 

[12], 12% (948) were flagged by at least one anti-virus 

tool and 2% (150) were identified as malware by at 

least 10 tools (see Figure 6). Previous mobile malware 

detection work has focused on dynamic analysis of 

app executables [13]–[15] as well as static analysis of 

code and permissions [16]–[18]. However, recent 

Android malware analysis revealed that malware 

evolves quickly to bypass anti-virus tools [19]. In this 

paper, we seek to identify both malware and search 

rank fraud subjects in Google Play. This 

combinationFig. 1: An “install job” posting from 

Freelancer [7], asking for 2000 installs within 3 days 

(in orange), in an organized way that includes 

expertise verifications and provides secrecy 

assurances (in blue). Text enlarged for easier reading. 

is not arbitrary: we posit that malicious developers 
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resort to search rank fraud to boost the impact of 

their malware. Unlike existing solutions, we build this 

work on the observation that fraudulent and 

malicious behaviors leave behind telltale signs on app 

markets. We uncover these nefarious acts by picking 

out such trails. For instance, the high cost of setting 

up valid Google Play accounts forces fraudsters to 

reuse their accounts across review writing jobs, 

making them likely to review more apps in common 

than regular users. Resource constraints can compel 

fraudsters to post reviews within short time intervals. 

Legitimate users affected by malware may report 

unpleasant experiences in their reviews. Increases in 

the number of requested permissions from one 

version to the next, which we will call “permission 

ramps”, may indicate benign to malware (Jekyll-Hyde) 

transitions. 

    We propose FairPlay, a system that leverages the 

above observations to efficiently detect Google Play 

fraud and malware (see Figure 7). Our major 

contributions are: A fraud and malware detection 

approach. To detect fraud and malware, we propose 

and generate 28 relational, behavioral and linguistic 

features, that we use to train supervised learning 

algorithms [§ 4]: 

    Real-world Impact: Uncover Fraud & Attacks. 

FairPlay discovers hundreds of fraudulent apps. We 

show that these apps are indeed suspicious: the 

reviewers of 93.3% of them form at least 1 pseudo-

clique, 55% of these apps have at least 33% of their 

reviewers involved in a pseudo-clique, and the 

reviews of around 75% of these apps contain at least 

20 words indicative of fraud. 

     FairPlay also enabled us to discover a novel, 

coercive review campaign attack type, where app 

users are harassed into writing a positive review for 

the app, and install and review other apps. We have 

discovered 1, 024 coerced reviews, from users 

complaining about 193 such apps [§ 5.4 & § 5.5]. 

 

Fig. 1: Google Play components and relations. Google 

Play’s functionality centers on apps, shown as red 

disks. Developers, shown as orange disks upload apps. 

A developer may upload multiple apps. Users, shown 

as blue squares, can install and review apps. A user 

can only review an app that he previously installed. 

        Burguera et al. [13] used crowdsourcing to collect 

system call traces from real users, then used a 

“partitional” clustering algorithm to classify benign 

and malicious apps. Shabtai et al. [14] extracted 

features from monitored apps (e.g., CPU 

consumption, packets sent, running processes) and 

used machine learning to identify malicious apps. 

Grace et al. [15] used static analysis to efficiently 

identify high and medium risk apps. Previous work has 

also used app permissions to pinpoint malware [16]–

[18]. Sarma et al. [16] use risk signals extracted from 

app permissions, e.g., rare critical permissions (RCP) 

and rare pairs of critical permissions (RPCP), to train 

SVM and inform users of the risks vs. benefits 

tradeoffs of apps. In § 5.3 we show that FairPlay 

significantly improves on the performance achieved 

by Sarma et al. [16]. Peng et al. [17] propose a score 

to measure the risk of apps, based on probabilistic 

generative models such as Naive Bayes. Yerima et al. 

[18] also use features extracted from app 

permissions, API calls and commands extracted from 

the app executables. Sahs and Khan [22] used 

features extracted from app permissions and control 

flow graphs to train an SVM classi- fier on 2000 

benign and less than 100 malicious apps. Sanz et al. 

[23] rely strictly on permissions as sources of features 

for several machine learning tools.  

They use a dataset of around 300 legitimate 

and 300 malware apps. Google has deployed Bouncer, 

a framework that monitors published apps to detect 

and remove malware. Oberheide and Miller [11] have 

analyzed and revealed details of Bouncer (e.g., based 

in QEMU, using both static and dynamic analysis). 

Bouncer is not sufficient - our results show that 948 

apps out of 7,756 apps that we downloaded from 

Google Play are detected as suspicious by at least 1 

anti-virus tool. In addition, FairPlay detected 

suspicious behavior for apps that were not removed 

by Bouncer during a more than 6 months long 

interval. Instead of analyzing app executables, 
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FairPlay employs a relational, linguistic and behavioral 

approach based on longitudinal app data. FairPlay’s 

use of app permissions differs from existing work 

through its focus on the temporal dimension, e.g., 

changes in the number of requested permissions, in 

particular the “dangerous” ones. We observe that 

FairPlay identifies and exploits a new relationship 

between malware and search rank fraud. 

II Graph Based Opinion Spam Detection 

 Graph based approaches have been proposed to 

tackle opinion spam [24], [25]. Ye and Akoglu [24] 

quantify the chance of a product to be a spam 

campaign target, then cluster spammers on a 2-hop 

subgraph induced by the products with the highest 

chance values. Akoglu et al. [25] frame fraud 

detection as a signed network classification problem 

and classify users and products, that form a bipartite 

network, using a propagation-based algorithm. 

     FairPlay’s relational approach differs as it identifies 

apps reviewed in a contiguous time interval, by 

groups of users with a history of reviewing apps in 

common. FairPlay combines the results of this 

approach with behavioral and linguistic clues, 

extracted from longitudinal app data, to detect both 

search rank fraud and malware apps. We emphasize 

that search rank fraud goes beyond opinion spam, as 

it implies fabricating not only reviews, but also user 

app install events and ratings. 

We have collected longitudinal data from 

87K+ newly released apps over more than 6 months, 

and identified gold standard data. In the following, we 

briefly describe the tools we developed, then detail 

the data collection effort and the resulting datasets. 

A.  Data collection tools. We have developed the 

Google Play Crawler (GPCrawler) tool, to 

automatically collect data published by Google Play 

for apps, users and reviews. Google Play prevents 

scripts from scrolling down a user page. Thus, to 

collect the ids of more than 20 apps reviewed by a 

user. To overcome this limitation, we developed a 

Python script and a Firefox add-on. Given a user id, 

the script opens the user page in Firefox. When the 

script loads the page, the addon becomes active. The 

add-on interacts with Google Play pages using content 

scripts (Browser specific components that let us 

access the browsers native API) and port objects for 

message communication. The add-on displays a 

“scroll down” button that enables the script to scroll 

down to the bottom of the page. The script then uses 

a DOMParser to extract the content displayed in 

various formats by Google Play. It then sends this 

content over IPC to the add-on. The add-on stores it, 

using Mozilla XPCOM components, in a sand-boxed 

environment of local storage in a temporary file. The 

script then extracts the list of apps rated or reviewed 

by the user. 

     We have also developed the Google Play App 

Downloader (GPad), a Java tool to automatically 

download apks of free apps on a PC, using the open-

source Android Market API [26]. GPad takes as input a 

list of free app ids, a Gmail account and password, 

and a GSF id. GPad creates a new market session for 

the “androidsecure” service and logs in. GPad sets 

parameters for the session context (e.g., mobile 

device Android SDK version, mobile operator, 

country), then issues a GetAssetRequest for each app 

identifier in the input list. GPad introduces a 10s delay 

between requests. The result contains the url for the 

app; GPad uses this url to retrieve and store the app’s 

binary stream into a local file. After collecting the 

binaries of the apps on the list, GPad scans each app 

apk using VirusTotal [12], an online malware detector 

provider, to find out the number of anti-malware 

tools (out of 57: AVG, McAfee, Symantec, Kaspersky, 

Malwarebytes, F-Secure, etc.) that identify the apk as 

suspicious. We used 4 servers (PowerEdge R620, Intel 

Xeon E-26XX v2 CPUs) to collect our datasets, which 

we describe next.  

III Longitudinal App Data 

 In order to detect suspicious changes that occur early 

in the lifetime of apps, we used the “New Releases” 

link to identify apps with a short history on Google 

Play. Our interest in newly released apps stems from 

our analysis of search rank fraud jobs posted on 

crowdsourcing sites, that revealed that app 

developers often recruit fraudsters early after 

uploading their apps on Google Play. Their intent is 

likely to create the illusion of an up-and-coming app, 

that may then snowball with interest from real users. 
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By monitoring new apps, we aim to capture in real-

time the moments when such search rank fraud 

campaigns begin. 

 

 

    We approximate the first upload date of an app 

using the day of its first review. We have started 

collecting new releases in July 2014 and by October 

2014 we had a set of 87, 223 apps, whose first upload 

time was under 40 days prior to our first collection 

time, when they had at most 100 reviews. 

    Figure 3 shows the distribution of the fresh app 

categories. Figure 4 shows the average rating 

distribution of the fresh apps. Most apps have at least 

a 3.5 rating aggregate rating, with few apps between 

1 and 2.5 stars. However, we observe a spike at more 

than 8, 000 apps with less than 1 star. We have 

collected longitudinal data from these 87, 223 apps 

between October 24, 2014 and May 5, 2015. 

Specifically, for each app we captured “snapshots” of 

its Google Play metadata, twice a week. An app 

snapshot consists of values for all its time varying 

variables, e.g., the reviews, the rating and install 

counts, and the set of requested permissions (see § 2 

for the complete list). For each of the 2, 850, 705 

reviews we have collected from the 87, 223 apps, we 

recorded the reviewer’s name and id (2, 380, 708 

unique ids), date of review, review title, text, and 

rating. 

    This app monitoring process enables us to extract a 

suite of unique features, that include review, install 

and permission changes. In particular, we note that 

this ap 

 

Fig. 5: Co-review graph of 15 seed fraud accounts (red 

nodes) and the 188 GbA accounts (orange nodes). 

 Edges indicate reviews written in common by the 

accounts corresponding to the endpoints. We only 

show edges having at least one seed fraud account as 

an endpoint. The 15 seed fraud accounts form a 

suspicious clique with edges weights that range 

between 60 and 217. The GbA accounts are also 

suspiciously well connected to the seed fraud 

accounts: the weights of their edges to the seed fraud 

accounts ranges between 30 and 302. 

 

     proach enables us to overcome the Google Play 

limit of 4000 displayed reviews per app: each 

snapshot will capture only the reviews posted after 

the previous snapshot. 

Benign apps. We have selected 925 candidate apps 

from the longitudinal app set, that have been 

developed by Google designated “top developers”. 

We have used GPad to filter out those flagged by 
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VirusTotal. We have manually investigated 601 of the 

remaining apps, and selected a setof 200 apps that (i) 

have more than 10 reviews and (ii) were developed by 

reputable media outlets (e.g., NBC, PBS) or have an 

associated business model (e.g., fitness trackers). We 

have also collected the 32, 022 reviews of these apps. 

 

Fig. 7: FairPlay system architecture. The CoReG 

module identifies suspicious, time related co-review 

behaviors. The RF module uses linguistic tools to 

detect suspicious behaviors reported by genuine 

reviews. The IRR module uses behavioral information 

to detect suspicious apps. The JH module identifies 

permission ramps to pinpoint possible Jekyll-Hyde app 

transitions. 

Genuine reviews. We have manually collected a gold 

standard set of 315 genuine reviews, as follows. First, 

we have collected the reviews written for apps 

installed on the Android smartphones of the authors. 

We then used Google’s text and reverse image search 

tools to identify and filter those that plagiarized other 

reviews or were written from accounts with generic 

photos. We have then manually selected reviews that 

mirror the authors’ experience, have at least 150 

characters, and are informative (e.g., provide 

information about bugs, crash scenario, version 

update impact, recent changes). 

FairPlay organizes the analysis of longitudinal app 

data into the following 4 modules, illustrated in Figure 

7. The CoReview Graph (CoReG) module identifies 

apps reviewed in a contiguous time window by groups 

of users with significantly overlapping review 

histories.  The Review Feedback (RF) module exploits 

feedback left by genuine reviewers, while the Inter 

Review Relation (IRR) module leverages relations 

between reviews, ratings and install counts. The 

Jekyll-Hyde (JH) module monitors app permissions, 

with a focus on dangerous ones, to identify apps that 

convert from benign to malware. Each module 

produces several features that are used to train an 

app classifier. FairPlay also uses general features such 

as the app’s average rating, total number of reviews, 

ratings and installs, for a total of 28 features. Table 1 

summarizes the most important features. We now 

detail each module and the features it extracts. 

 

Fig. 8: Example pseudo-cliques and PCF output. Nodes 

are users and edge weights denote the number of 

apps reviewed in common by the end users. Review 

timestamps have a 1-day granularity. (a) The entire 

co-review graph, detected as pseudo-clique by PCF 

when θ is 6. When θ is 7, PCF detects the subgraphs 

of (b) the first two days and (c) the last two days. 

When θ=8, PCF detects only the clique formed by the 

first day reviews (the red nodes). 

IV The Co-Review Graph (CoReG) 

Module 

This module exploits the observation that fraudsters 

who control many accounts will re-use them across 

multiple jobs. Its goal is then to detect sub-sets of an 

app’s reviewers that have performed significant 

common review activities in the past. In the following, 

we describe the co-review graph concept, formally 

present the weighted maximal clique enumeration 

problem, then introduce an efficient heuristic that 

leverages natural limitations in the behaviors of 

fraudsters. Co-review graphs. Let the co-review graph 

of an app, see Figure 8, be a graph where nodes 

correspond to user accounts who reviewed the app, 

and undirected edges have a weight that indicates the 

number of apps reviewed in common by the edge’s 

endpoint users. Figure 16a shows the co-review clique 

of one of the seed fraud apps (see § 3.2). The co-

review graph concept naturally identifies user 

accounts with significant past review activities. 
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Fig. 9: Timelines of positive reviews for 2 apps from 

the fraudulent app dataset. The first app has multiple 

spikes while the second one has only one significant 

spike. sentences extracted from randomly selected 

350 positive and 410 negative Google Play reviews, 

and (ii) 10, 663 sentences extracted from 700 positive 

and 700 negative IMDB movie reviews [31]. 10-fold 

cross validation of the Naive Bayes classifier over 

these datasets reveals a false negative rate of 16.1% 

and a false positive rate of 19.65%, for an overall 

accuracy of 81.74%. We ran a binomial test [32] for a 

given accuracy of p=0.817 over N=1,041 cases using 

the binomial distribution binomial(p, N) to assess the 

95% confidence interval for our result. The deviation 

of the binomial distribution is 0.011. Thus, we are 

95% confident that the true performance of the 

classifier is in the interval (79.55, 83.85). 

We used the trained Naive Bayes classifier to 

determine the statements of R that encode positive 

and negative sentiments. We then extracted the 

following features: (i) the percentage of statements in 

R that encode positive and negative sentiments 

respectively, and (ii) the rating of R and its percentile 

among the reviews written by U. 

In Section V we evaluate the review 

classification accuracy of several supervised learning 

algorithms trained on these features and on the gold 

standard datasets of fraudulent and genuine reviews 

introduced in Section III. 

Step RF.2: Reviewer feedback extraction. We 

conjecture that (i) since no app is perfect, a 

“balanced” review that contains both app positive 

and negative sentiments is more likely to be genuine, 

and (ii) there should exist a relation between the 

review’s dominating sentiment and its rating. Thus, 

after filtering out fraudulent reviews, we extract 

feedback from the remaining reviews. For this, we 

have used NLTK to extract 5, 106 verbs, 7, 260 nouns 

and 13, 128 adjectives from the 97, 071 reviews we 

collected from the 613 gold standard apps (see § 3.2). 

We removed non ascii characters and stop words, 

then applied lemmatization and discarded words that 

appear at most once.  

   We have attempted to use stemming, extracting the 

roots of words, however, it performed poorly. This is 

due to the fact that reviews often contain (i) 

shorthands, e.g., “ads”, “seeya”, “gotcha”, “inapp”, (ii) 

misspelled words, e.g., “pathytic”, “folish”, “gredy”, 

“dispear” and even (iii) emphasized misspellings, e.g., 

“hackkked”, “spammmerrr”, “spooooky”. 

 

Fig. 10: Mosaic plot of install vs. rating count relations 

of the 87K apps. Larger cells (rectangles) signify that 

more apps have the corresponding rating and install 

count range; dotted lines mean no apps in a certain 

install/rating category. The standardized residuals 

identify the cells that contribute the most to the χ 2 

test. The most significant rating:install ratio is 1:100. 

      We used the resulting words to manually identify 

lists of words indicative of malware, fraudulent and 

benign behaviors. Our malware indicator word list 

contains 31 words (e.g., risk, hack, corrupt, spam, 

malware, fake, fraud, blacklist, ads). The fraud 

indicator word list contains 112 words (e.g., cheat, 

hideous, complain, wasted, crash) and the benign 

indicator word list contains 105 words. RF features. 

We extract 3 features (see Table 1), denoting the 

percentage of genuine reviews that contain malware, 

fraud, and benign indicator words respectively. We 

also extract the impact of detected fraudulent 

reviews on the overall rating of the app: the absolute 
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difference between the app’s average rating and its 

average rating when ignoring all the fraudulent 

reviews. 

This module leverages temporal relations 

between reviews, as well as relations between the 

review, rating and install counts of apps, to identify 

suspicious behaviors. Temporal relations. In order to 

compensate for a negative review, an attacker needs 

to post a significant number of positive reviews. 

Specifically, 

 Claim 1. Let RA denote the average rating of an app A 

just before receiving a 1 star review. In order to 

compensate for the 1 star review, an attacker needs 

to post at least RA−1 5−RA positive reviews. 

Proof: Let σ be the sum of all the k reviews received 

by a before time T . Then, RA = σ k . Let qr be the 

number of fraudulent reviews received by A. To 

compensate for the 1 star review posted at time T , qr 

is minimized when all those reviews are 5 star. We 

then have that: RA = σ k = σ+1+5qr k+1+qr . The 

numerator of the last fraction denotes the sum of all 

the ratings received by A after time T and the 

denominator is the total number of reviews. 

Rewriting the last equality, weobtain that qr = σ−k 

5k−σ = RA−1 5−RA . The last equality follows by 

dividing both the numerator and denominator by k. 

 

Fig. 11: Mosaic plot showing relationships between 

the install count and the average app rating, over the 

87K apps. A cell contains the apps that have a certain 

install count interval (x axis) and rating interval (y 

axis). Larger cells contain more apps. We observe a 

relationship between install count and rating: apps 

that receive more installs also tend to have higher 

average ratings (i.e., above 3 stars). This may be due 

to app popularity relationship to quality which may be 

further positively correlated with app rating. 

The 1, 024 coerced reviews were posted for 

193 apps. Figure 20 shows the distribution of the 

number of coerced reviews per app. While most of the 

193 apps have received less than 20 coerced reviews, 5 

apps have each received more than 40 such reviews. 

We have observed several duplicates among the 

coerced reviews. We identify two possible 

explanations. First, as we previously mentioned, some 

apps do not keep track of the user having reviewed 

them, thus repeatedly coerce subsequent reviews from 

the same user. A second explanation is that seemingly 

coerced reviews, can also be posted as part of a 

negative search rank fraud campaign. However, both 

scenarios describe apps likely to have been subjected 

to fraudulent behaviors. 

V CONCLUSIONS 

We have introduced FairPlay, a system to 

detect both fraudulent and malware Google Play apps. 

Our experiments on a newly contributed longitudinal 

app dataset, have shown that a high percentage of 

malware is involved in search rank fraud; both are 

accurately identified by FairPlay. In addition, we 

showed FairPlay’s ability to discover hundreds of apps 

that evade Google Play’s detection technology, 

including a new type of coercive fraud attack. 
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